Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5268, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002250

RESUMO

Multicellular evolution is a major transition associated with momentous diversification of multiple lineages and increased developmental complexity. The volvocine algae comprise a valuable system for the study of this transition, as they span from unicellular to undifferentiated and differentiated multicellular morphologies despite their genomes being similar, suggesting multicellular evolution requires few genetic changes to undergo dramatic shifts in developmental complexity. Here, the evolutionary dynamics of six volvocine genomes were examined, where a gradual loss of genes was observed in parallel to the co-option of a few key genes. Protein complexes in the six species exhibited novel interactions, suggesting that gene loss could play a role in evolutionary novelty. This finding was supported by gene network modeling, where gene loss outpaces gene gain in generating novel stable network states. These results suggest gene loss, in addition to gene gain and co-option, may be important for the evolution developmental complexity.


Assuntos
Evolução Biológica , Filogenia
2.
Sci Rep ; 13(1): 1687, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717613

RESUMO

Despite a continuous increase in algal genome sequencing, structural annotations of most algal genome assemblies remain unavailable. This pervasive scarcity of genome annotation has restricted rigorous investigation of these genomic resources and may have precipitated misleading biological interpretations. However, the annotation process for eukaryotic algal species is often challenging as genomic resources and transcriptomic evidence are not always available. To address this challenge, we benchmark the cutting-edge gene prediction methods that can be generalized for a broad range of non-model eukaryotes. Using the most accurate methods selected based on high-quality algal genomes, we predict structural annotations for 135 unannotated algal genomes. Using previously available genomic data pooled together with new data obtained in this study, we identified the core orthologous genes and the multi-gene phylogeny of eukaryotic algae, including of previously unexplored algal species. This study not only provides a benchmark for the use of structural annotation methods on a variety of non-model eukaryotes, but also compensates for missing data in the current spectrum of algal genomic resources. These results bring us one step closer to the full potential of eukaryotic algal genomics.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/genética , Genômica/métodos , Genoma , Anotação de Sequência Molecular
3.
Biotechnol Adv ; 60: 108034, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089253

RESUMO

Microalgae are increasingly used to generate a wide range of commercial products, and there is growing evidence that microalgae-based products can be produced sustainably. However, industrial production of microalgal biomass is not as developed as other biomanufacturing platform technologies. In addition, results of bench-scale research often fail to translate to large-scale or mass production systems. This disconnect may result from trait drift and evolution occurring, through time, in response to unique drivers in each environment, such as cultivation regimes, weather, and pests. Moreover, outdoor and indoor cultivation of microalgae has the potential to impose negative selection pressures, which makes the maintenance of desired traits a challenge. In this context, this review sheds the light on our current understanding of trait drift and evolution in microalgae. We delineate the basics of phenotype plasticity and evolution, with a focus on how microalgae respond under various conditions. In addition, we review techniques that exploit phenotypic plasticity and evolution for strain improvement in view of industrial commercial applications, highlighting associated advantages and shortcomings. Finally, we suggest future research directions and recommendations to overcome unwanted trait drift and evolution in microalgae cultivation.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Microalgas/genética , Fenótipo
4.
J Phycol ; 58(3): 436-448, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262191

RESUMO

Microalgae are diverse, with many gaps remaining in phylogenetic and physiological understanding. Thus, studying new microalgae species increases our broader comprehension of biological diversity, and evaluation of new candidates as algal production platforms can lead to improved productivity under a variety of cultivation conditions. Chlorella is a genus of fast-growing species often isolated from freshwater habitats and cultivated as a source of nutritional supplements. However, the use of freshwater increases competition with other freshwater needs. We identified Chlorella desiccata to be worthy of further investigation as a potential algae production strain, due to its isolation from a marine environment and its promising growth and biochemical composition properties. Long-read genomic sequencing was conducted for C. desiccata UTEX 2526, resulting in a high-quality, near chromosome level, diploid genome with an assembly length of 21.55 Mbp in only 18 contigs. We also report complete circular mitochondrial and chloroplast genomes. Phylogenomic and phylogenetic analyses using nuclear, chloroplast, 18S rRNA, and actin sequences revealed that this species clades within strains currently identified as Nannochloris (Trebouxiophyceae, Chlorophyta), leading to its reclassification as Nannochloris sp. "desiccata" UTEX 2526. The mode of cell division for this species is autosporulation, differing from the type species N. bacillaris. As has occurred across multiple microalgae genera, there are repeated examples of Nannochloris species reclassification in the literature. This high-quality genome assembly and phylogenetic analysis of the potential algal production strain Nannochloris sp. "desiccata" UTEX 2526 provides an important reference and useful tool for further studying this region of the phylogenetic tree.


Assuntos
Chlorella , Genoma de Cloroplastos , Microalgas , Chlorella/genética , Microalgas/genética , Filogenia , RNA Ribossômico 18S/genética
5.
Toxins (Basel) ; 11(12)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775284

RESUMO

The sequenced genome and the leaf transcriptome of a near relative of Abrus pulchellus and Abrus precatorius was analyzed to characterize the genetic basis of toxin gene expression. From the high-quality genome assembly, a total of 26 potential coding regions were identified that contain genes with abrin-like, pulchellin-like, and agglutinin-like homology, with full-length transcripts detected in leaf tissue for 9 of the 26 coding regions. All of the toxin-like genes were identified within only five isolated regions of the genome, with each region containing 1 to 16 gene variants within each genomic region (<1 Mbp). The Abrusprecatorius cultivar sequenced here contains genes which encode for proteins that are homologous to certain abrin and prepropulchellin genes previously identified, and we observed substantial diversity of genes and predicted gene products in Abrus precatorius and previously characterized toxins. This suggests diverse toxin repertoires within Abrus, potentially the results of rapid toxin evolution.


Assuntos
Abrina/genética , Abrus/genética , Genoma de Planta/genética , DNA de Plantas/química , DNA de Plantas/genética , Filogenia , Folhas de Planta/química , Lectinas de Plantas , Toxinas Biológicas , Transcriptoma , Sequenciamento Completo do Genoma
6.
Am Nat ; 192(3): E93-E105, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125231

RESUMO

From the male peacock's tail plumage to the floral displays of flowering plants, traits related to sexual reproduction are often complex and exaggerated. Why has sexual reproduction become so complicated? Why have such exaggerated sexual traits evolved? Early work posited a connection between multicellularity and sexual traits such as anisogamy (i.e., the evolution of small sperm and large eggs). Anisogamy then drives the evolution of other forms of sexual dimorphism. Yet the relationship between multicellularity and the evolution of sexual traits has not been empirically tested. Given their extensive variation in both multicellular complexity and sexual systems, the volvocine green algae offer a tractable system for understanding the interrelationship of multicellular complexity and sex. Here we show that species with greater multicellular complexity have a significantly larger number of derived sexual traits, including anisogamy, internal fertilization, and secondary sexual dimorphism. Our results demonstrate that anisogamy repeatedly evolved from isogamous multicellular ancestors and that anisogamous species are larger and produce larger zygotes than isogamous species. In the volvocine algae, the evolution of multicellularity likely drives the evolution of anisogamy, and anisogamy subsequently drives secondary sexual dimorphism. Multicellularity may set the stage for the overall diversity of sexual complexity throughout the Tree of Life.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/genética , Caracteres Sexuais , Volvox/genética , Meiose
7.
Mol Biol Evol ; 35(4): 855-870, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294063

RESUMO

Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.


Assuntos
Evolução Biológica , Clorófitas/genética , Genes cdc , Componentes Genômicos , Ciclinas/genética , Genes do Retinoblastoma , Família Multigênica , Complexo de Endopeptidases do Proteassoma/genética , Seleção Genética , Transcriptoma , Ubiquitina/genética
8.
Evolution ; 72(2): 386-398, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134623

RESUMO

Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.


Assuntos
Evolução Biológica , Autofertilização , Volvox/genética
9.
Nat Commun ; 7: 11370, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102219

RESUMO

The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these changes in undifferentiated Gonium indicates extensive group-level adaptation during the initial step in the evolution of multicellularity. These results emphasize an early and formative step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may shed light on the evolutionary history of other multicellular innovations and evolutionary transitions.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Chlamydomonas/genética , Clorófitas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Evolução Biológica , Chlamydomonas/citologia , Clorófitas/classificação , Clorófitas/citologia , Tamanho do Genoma , Filogenia , Células Vegetais/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transformação Genética
10.
Evolution ; 68(7): 2014-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24689915

RESUMO

To understand the hierarchy of life in evolutionary terms, we must explain why groups of one kind of individual, say cells, evolve into a new higher level individual, a multicellular organism. A fundamental step in this process is the division of labor into nonreproductive altruistic soma. The regA gene is critical for somatic differentiation in Volvox carteri, a multicellular species of volvocine algae. We report the sequence of regA-like genes and several syntenic markers from divergent species of Volvox. We show that regA evolved early in the volvocines and predict that lineages with and without soma descended from a regA-containing ancestor. We hypothesize an alternate evolutionary history of regA than the prevailing "proto-regA" hypothesis. The variation in presence of soma may be explained by multiple lineages independently evolving soma utilizing regA or alternate genetic pathways. Our prediction that the genetic basis for soma exists in species without somatic cells raises a number of questions, most fundamentally, under what conditions would species with the genetic potential for soma, and hence greater individuality, not evolve these traits. We conclude that the evolution of individuality in the volvocine algae is more complicated and labile than previously appreciated on theoretical grounds.


Assuntos
Evolução Molecular , Duplicação Gênica , Genes de Plantas , Volvox/genética , Diferenciação Celular , Filogenia , Volvox/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...